Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Cancer Research, Statistics, and Treatment ; 5(1):19-25, 2022.
Article in English | EMBASE | ID: covidwho-20239094

ABSTRACT

Background: Easy availability, low cost, and low radiation exposure make chest radiography an ideal modality for coronavirus disease 2019 (COVID-19) detection. Objective(s): In this study, we propose the use of an artificial intelligence (AI) algorithm to automatically detect abnormalities associated with COVID-19 on chest radiographs. We aimed to evaluate the performance of the algorithm against the interpretation of radiologists to assess its utility as a COVID-19 triage tool. Material(s) and Method(s): The study was conducted in collaboration with Kaushalya Medical Trust Foundation Hospital, Thane, Maharashtra, between July and August 2020. We used a collection of public and private datasets to train our AI models. Specificity and sensitivity measures were used to assess the performance of the AI algorithm by comparing AI and radiology predictions using the result of the reverse transcriptase-polymerase chain reaction as reference. We also compared the existing open-source AI algorithms with our method using our private dataset to ascertain the reliability of our algorithm. Result(s): We evaluated 611 scans for semantic and non-semantic features. Our algorithm showed a sensitivity of 77.7% and a specificity of 75.4%. Our AI algorithm performed better than the radiologists who showed a sensitivity of 75.9% and specificity of 75.4%. The open-source model on the same dataset showed a large disparity in performance measures with a specificity of 46.5% and sensitivity of 91.8%, thus confirming the reliability of our approach. Conclusion(s): Our AI algorithm can aid radiologists in confirming the findings of COVID-19 pneumonia on chest radiography and identifying additional abnormalities and can be used as an assistive and complementary first-line COVID-19 triage tool.Copyright © Cancer Research, Statistics, and Treatment.

2.
Commun. Comput. Info. Sci. ; 1324:40-50, 2020.
Article in English | Scopus | ID: covidwho-1002002

ABSTRACT

Sports data has become widely available in the recent past. With the improvement of machine learning techniques, there have been attempts to use sports data to analyze not only the outcome of individual games but also to improve insights and strategies. The outbreak of COVID-19 has interrupted sports leagues globally, giving rise to increasing questions and speculations about the outcome of this season’s leagues. What if the season was not interrupted and concluded normally? Which teams would end up winning trophies? Which players would perform the best? Which team would end their season on a high and which teams would fail to keep up with the pressure? We aim to tackle this problem and develop a solution. In this paper, we propose UCLData, which is a dataset containing detailed information of UEFA Champions League games played over the past six years. We also propose a novel autoencoder based machine learning pipeline that can come up with a story on how the rest of the season will pan out. © Springer Nature Switzerland AG 2020.

SELECTION OF CITATIONS
SEARCH DETAIL